详情咨询热线: 15037927235 0379-69581002

新闻资讯
当前位置:首页 > 新闻资讯

什么是铸件“桔皮”? 产生原因?8项防止措施
什么是铸件“桔皮”? 产生原因?8项防止措施

1、铸件“桔皮”缺陷的特征   铸件“桔皮”是生产中反复出现的一种铸造缺陷,它对铸件质量的影响较大,缺陷出现在铸件肥厚部位、热节及内浇道附近以及受热集中而冷却又慢的部位。铸件表面有微凸的小圆斑,呈“眼圈”状,这些表面粗糙,看起来象“桔子皮”的斑点,在多种铸件中反复出现,有时整批铸件均有,其在每个铸件上的数量少则几个,多至整个平面;小圆斑有的较大,有的小至麻点;有时是单个分散的,有时也呈密集的片状凸起物,高出铸件0.4-0.6mm,直径3-5mm。据我公司统计,废品中的15%是“桔皮”缺陷造成的,而且碳钢件产生桔皮缺陷的机会更多一些。 2、“桔皮”缺陷产生的原因分析    导致“桔皮”产生的根本的原因是涂料表面堆积、硬化不充分。型壳在焙烧后,其表面上形成黄色或黄绿色玻璃体,浇注后与钢液反应而形成硅酸盐瘤粘附于铸件表面。单纯地延长硬化时间,无助于zui终解决“桔皮”问题。通过实践,有以下几方面的原因。 2.1原材料方面的影响    众所周知,水玻璃涂料的粉液比低,粉料分布不均匀。水玻璃的模数愈高,密度愈大,则涂料的粉液比愈低,粉料的分布愈不均匀,也zui不易充分硬化。 (1)水玻璃的影响     水玻璃的模数、密度以及杂质的多少对涂料的流动性影响极大。随着模数的增大,水玻璃中亚胶粒子比例增加,其粘度会随之增加,涂料的流变性恶化,当模组涂挂时极易在表层造成局部涂料堆积。    水玻璃参数不一致对涂料性能的影响是很大的,这一点很容易被忽视。参数的不一致性表现在两个方面。    其一是模数的不一致性,刚进厂的水玻璃只有经过长时间的静置扩散(分散)后才能使同一批模数趋于一致,达到稳定的分散状态;这一过程所需时间在一星期以上,如果急于使用则不可能获得理想的涂料流变性能。    其二是溶液密度的不一致性,在配涂料前通常要对水玻璃溶液的密度进行调整,应该特别注意加水搅拌后马上测得的密度是不真实的,因为液体分散稳定的过程尚未完成,与所希望的密度有一定的误差,据此配制的涂料,其粘度和流动性都有误差。 (2)耐火粉料的影响    耐火粉料颗粒的分布和形状对涂料流变性的影响较大,双峰粉涂料具有较好的流变性是大家公认的;但即便是粒度分布基本相同的双峰粉,当耐火粉料颗料形状分别为多角、尖角和片状的粉配制涂料时,在粉液比和水玻璃模数相同的条件下其流变性也会有很大的差异。    当粉料形状越接近片状时,其比表面积也越大,颗粒间的摩擦力和作用力增大,涂料的粘度将大于多角形的粉料。 (3)水玻璃密度和粉液比的综合影响 水玻璃密度和粉液比的变化对表层涂料流变性的影响是非常直观的,水玻璃密度和粉液比过大时涂料粘度增加、流变性变差、涂层变厚会引起涂料在型壳表面局部堆积,型壳硬化不良zui终导致“桔皮”问题。 2.2工艺方面的影响 (1)表面层风干不充分。表面层风干是涂料的再均匀化过程,同时,也是水玻璃脱水固化过程,如风干时间过短,表面层涂料在熔模表面分布不均匀,造成其后的硬化不充分,脱蜡后将在型壳内表面形成团状聚集物,局部形成钠盐杂质。 (2)过度滴控。过度滴控指表面层浸挂涂料时,单方向流动未能及时粘砂,将导致涂料在熔模表面局部方向上的堆积,造成其后的硬化不完全。 (3)型壳层间硬化不良。由于涂料层尤其是前两层中存在未硬化部分,未硬化的涂料在脱蜡和焙烧后造成型壳内表面的钠盐聚集,与钢水反应后生成“桔皮”缺陷。 2.3环境方面的影响 在寒冷的冬季,过低的室温使涂料流动性变差造成涂料堆积,过厚堆积的涂料又不能完全硬化;此外硬化液的温度随室温的降低也会造成硬化过程的缓慢和不完全。环境湿度的影响则主要发生在雨季,空气湿度的增加会影响风干过程,常因为风干不足而出现“桔皮”问题。 3、避免“桔皮”缺陷的措施 3.1原料选用 (l)水玻璃在模数合适的情况下,必须严格控制杂质含量;应根据环境的温度、湿度、铸件的结构特点以及所配粉料的特点调整水玻璃密度。 (2)粉料在粒度符合使用要求的条件下,其粒形至关重要,球形和多角形粉料是较理想的,而片状粉料不能使用。 3.2工艺对策 (1)水玻璃密度的调整。密度的合适与否将直接影响铸件的表面质量,密度过大会导致涂料流动性差而造成分层和“桔皮”缺陷,密度过小又会形成铸件表面的黄瓜刺;合适的密度通常与环境温度、粉料的粒度、微观形状及铸件的结构特点有关系。密度一般控制在1.27-1.29g/cm3之间,其调整原则是: ①环境温度高时增加密度,低时减小密度; ②粉料粗且片状比例小时增加密度,粉料细且片状比例大时减小密度; ③结构简单涂料易流动的铸件可适当增加密度,反之减小密度。 (2)粉液比的确定。粉液比也是影响铸件表面质量的重要因素之一,比例过大则会因涂料的流动性差导致涂挂不均匀而产生分层和涂料堆积;而太小则会产生铸件表面的黄瓜刺。其配比原则是在保证涂料流动性的前提下尽量提高粉液比。 (3)硬化液的浓度、温度与硬化时间。一般情况下,氯化氨质量分数在25%以上的硬化剂才会有较好的硬化效果;如果氯化铵含量低,靠延长时间是不能改善硬化效果的。 (4)涂挂操作方式。实际生产中有相当一部分“桔皮”问题是由于操作不当造成的,涂料的单方向流动极易产生堆积而造成硬化不充分,所以在蜡模浸挂涂料之后的滴控直到撒砂完毕的整个过程中,必须不断改变模组的方向。 (5)脱蜡工艺。在脱蜡热水中补充适当的硬化剂,由于硬化剂的吸热作用和反应,会进一步使得表面层所滞留的反应产物NaCl溶于脱蜡水中而大部分去除,此时,型壳表面形成的是一层低钠硅胶层,有利于防止“桔皮”缺陷的产生。 (6)环境温度。环境温度偏低会导致涂料流动性差,造成涂挂不均匀而形成桔皮及其他制壳缺陷,制壳工序的环境温度应控制在15℃以上。

+查看全文

23 2020-04

​铸件表面出现气泡,这个办法超好用!
​铸件表面出现气泡,这个办法超好用!

气泡是铸件常见问题之一,而且一旦铸件出现了气泡问题,也等于产品报废了。那么如何避免铸件产生气泡?看看下面这7条。 【缺陷现象】 铸件表皮下,聚集气体鼓胀所形成的泡,有时会崩裂,存在贯通和非贯通两种。 别名:鼓泡、起泡 【原因分析】 模具温度太高,开模过早。 填充速度太高,金属流卷入气体过多。 涂料发气量大,用量过多,浇注前未燃尽,使挥发气体被包在铸件表层,另涂料含水量大。 型腔内气体没有排出,排气不顺。 合金熔炼温度过高。 铝合金液体除气不彻底,吸有较多气体,铸件凝固时析出留在铸件内 填充时产生紊流。 【对应措施】 1、测温枪测试模具表面温度,显示数值超过工艺规定范围。降低模具表面温度,增加保压时间; 2、铸件表面内浇口压入的金属流明显比其它部位亮很多。填充速度高产生原因一方面是设备本身的压射速度高,另一方面可能是内浇口太薄造成。降低压射速度,适当增加内浇口厚度;判断内浇口薄的方法:是否有浇口易粘现象,降低二快速度看远端是否有严重压不实现象,不给压打件,看是否有多股铝液流; 3、喷涂时察看雾的颜色是否呈白色,合模前察看型腔是否还有气体残留。更换涂料或增大涂料与水的配比; 4、在烫模阶段,铸件表面有明显的漩涡和涂料堆积。判断及解决方法:调开档,人为产生涨模,如果解决,需开排气道; 5、铸件表面内浇口压入的金属流特别亮并伴有粘结。适当降低浇注温度; 6、取样块测密度,看是否符合要求。重新进行除气处理或在保温炉内进行再次精炼; 7、烫模阶段铸件表面明显有各流溶接不到一起的痕迹伴有涂料堆积。 判断及解决方法:涂黑油生产,看痕迹是否有堆积,分析堆积部位,解决方法: a、开设或加大相应部位的集渣包, b、调整内浇口流向、位置或填充方向。

+查看全文

22 2020-04

铸件冒口尺寸怎么计算?看完就懂了!
铸件冒口尺寸怎么计算?看完就懂了!

1.冒口设计的基本原理 铸件冒口主要是在铸钢件上使用。铸铁件只用于个别的厚大件的灰铸铁件和球铁件上。金属液在液态降温和凝固过程中,体积要收缩。铸件的体收缩大约为线收缩的3倍。因此,铸钢的体收缩通常按3---6%考虑,灰铸铁按2---3%,不过由于灰铸铁和球墨铸铁凝固时的石墨化膨胀,可以抵消部分体积收缩,所以如果壁厚均匀,铸型紧实度高,通常不需要设计冒口。铸件的体收缩如果得不到补充,就会在铸件上或者内部形成缩孔、缩陷或者缩松。严重时常常造成铸件报废。 冒口尺寸计算原则是,首先计算需要补缩的金属液需要多少。通常把这一部分金属液假设成球体,并求出直径(设为d0)用于冒口计算。冒口补缩铸件是有一定的范围------叫有效补缩距离,设为L,对厚度为h的板状零件通常L=3~5h 。对棒状零件L=(25~30)√h 式子中,h------铸件厚度 2.冒口尺寸的基本计算方法 冒口计算的公式、图线、表格等有很多。介绍如下。 zui常用的方法是,冒口直径 D=d0+h 理由是假定冒口和铸件以相同的速度凝固,凝固过程是从铸件的两个表面向内层进行,当铸件完全凝固终了,正好冒口凝固了同样的厚度,这时还剩下中间的空心的缩孔,体积正好等于补缩球的体积,这部分金属液在凝固过程中正好补缩进了铸件。 当铸件存在热节时,可以把h换成热节的直径T即可。 即D=do+T 。 另外设计冒口,还有个重要的部位,就是冒口颈,所谓冒口颈就是冒口和铸件的连接通道,冒口里的金属液都是经由冒口颈补缩到铸件里的。所以对冒口颈的截面是有要求的,通常取冒口颈的直径dj=(0.6~0.8)T 。 冒口高度 H=(1.5~2.5)D 。 H的高度还应该考虑要高于需要补缩部位的高度,否则就成了反补缩了,铸件补缩了冒口,这是要避免的。 3.其它计算方法 常用的经验计算方法还有不计算需要估算补缩的金属液,直接将热节园的直径乘个系数得出冒口直径。例如 简单铸件     D=(1.05~1.15)T   外形简单,热节比较集中。 复杂铸件     D=(1.40~1.80)T   外形复杂,例如有许多筋条和铸件的其余部分连接。 中间类型     D=(1.15~1.40)T   介于以上两种之间。 铸造生产的条件千差万别,因素太多,以至于所有的计算公式都是近似的有条件的。往往一个公式不一定适用于所有的场合。所以公式中往往有取值范围较大的系数供用户结合本单位的情况选择。

+查看全文

21 2020-04

铸造混砂基础知道,非常实用
铸造混砂基础知道,非常实用

型砂的配制包括三个方面,即原材料的准备、型砂的混制和将混制好的型砂调匀及松砂等工艺环节。铸造生产中所使用的型砂,有的是由回用砂加适量的新砂、粘土和水经混合均匀配制成的,有的全部是由新的材料配制成的。为了确保新砂质量,所有的原材料都须根据技术要求经验收合格后才能使用。为此,在配砂前都必须进行加工准备。 (1)       新砂 新砂在采购、运输过程中常混有草根、煤屑及泥块等杂物,同时含有一定数量的分分。潮湿的原砂不易过筛,配砂时不便于控制型砂的水分。因此,除含水量低、用于手工造型的湿型砂可直接配制外,新砂在使用前必须进行烘干和过筛。新砂的烘干用立式或卧式烘干滚筒,也可采用气流烘干的办法。常用的筛砂设备有手工筛、滚筒筛和振动筛等。 (2)       粘土 刚开采的粘土往往含有较多的水分具多为块状,因此使用前必须烘干、破碎并磨成粘土粉,主要由专门的工厂进行加工,包装万袋供应。有的工厂事先将膨润土或粘土与煤粉按比例制成粘土—煤粉粉浆,使粘土充分吸水膨胀,混砂时与原砂一起加入到混砂机里混合均匀。这种做法可简化混砂操作,便于运输,改善劳动条件,提高型砂质量。但必须严格控制粉浆的含水量,否则会影响型砂性能。 (3)       附加物 煤粉、硼配、氟化物和硫黄等附加物都必须粉碎、过筛后再使用。 (4)       旧砂 为了节省造型材料,降低铸件成本,旧砂应回用。旧砂在型砂所占比例很大,它对型砂的成分及性能有着很大的影响。旧砂中常混有各种杂物,如钉子、铁块和砂团等,在回用前必须进行处理,包括将砂块粉碎,用电磁分离器除去其中的铁质杂物然后过筛,必要时进行冷却。 在机械化程度高的铸造车间,型砂需求量大,周转速度很快,往往旧砂的温度还比较高,有的回用砂温度高达60摄氏度以上,如果采用这种型砂造型,容易粘附模样、芯盒及砂斗。由于型砂温度过高,会使水分蒸发太快,使型砂性能不稳定,同时影响铸件表面质量,影响造型劳动生产率。因此必须在铸件落砂、旧砂过筛、运输和混砂过程中加强通风冷却,降低型砂温度。 (5)       混砂 混砂的任务是将各种原材料混合均匀,使粘结剂包覆在砂粒表面上,混砂的质量主要取决于混砂工艺和混砂机的形式。 一、混砂机的形式。生产中常用的混砂设备有辗轮式、摆轮式和叶片式混砂机。辗轮式混砂机除有搅拌作用外,还有辗压搓揉作用,型砂的质量较好,但生产效率较低,主要用来混制面砂和单一砂。摆式混砂机的生产效率比辗轮式高几倍,且可边混砂边鼓风冷却,并有一定的搓揉作用,但型砂质量不如辗轮式混砂好,主要用于机械化程度高、生产量大的铸造车间混制单一砂及背砂。叶片式混砂机是一种连续作业式的设备,各种原是否无误混砂机的一端进入,混好的型砂从混砂机的另一端出来,生产效率高。叶片式混砂机有混合作用,但搓揉作用很差,主要用于混制背砂和粘土含量低的单一砂。 二、加料顺序与混砂时间。混制粘土型砂的加顺序一般是先加回用砂、原砂、粘土粉和附加物等干料,干混均匀后再加水湿混,均匀后即可使用。如果型砂中含有渣油液以及其他液态粘结剂,则应先加水将型砂混合均匀后再加入油类粘结剂。这种先加干粉后加水的混砂加料顺序存在的缺点是,在混砂机的辗盘边缘遗留一些粉料,这些粉料吸水后粘附在混砂机壁上,直到混辗后期或卸砂时才脱落下来,使型砂里含有混合不均匀的粘土或煤粉团块,恶化了型砂性能。同时干混时粉尘飞扬,劳动条件差。因此,有的工厂采用先在回用砂里加水混合,然后加粘土及煤粉混合均匀,zui后再加少量水分调节到所需要的含水量的混砂工艺。试验结果表明,后面这种加料顺序可缩短混砂时间,提高型砂质量,改善劳动条件。 为了使各种原材料混合均匀,混砂时间不能太短,否则影响型砂性能,但混砂时间也不宜过长。否则将使型砂温度升高,水分过多挥发,型砂结成块状,性能变坏且生产效率低。混砂时间主要根据混砂机的形式、粘土含量、对型砂性能要求等来决定。一般来说,粘土含量越多,对型砂质量要求越高,混砂时间越长。采用辗轮式混砂机混制面砂时,混砂时间一般为6—12分钟,北砂为3—6分钟,单一砂为4—8分钟。 (6)       调匀 型砂的调匀又称回性、渗匀,是指将混好的型砂在不失去水分的条件下放置一段时间,使水分均匀渗透到型砂中,让粘土充分吸水膨胀,以提高型砂的强度和透气性等性能。调匀时间主要根据粘土种类及加入量而定。型砂中粘土含量越多,原砂的颗粒越细,调匀时间越长。调匀时间应适当,否则型砂性能难以满足要注。单一砂一般为2—3小时,面砂为4—5小时。机械化铸造厂间型砂调匀是在型砂调匀斗里进行,非机械化的手工造型车间是将混好的型砂堆放在轩间地面上,并用湿麻袋覆盖进行调匀。 型砂经混辗和调匀后会被压实,有的被压成团块。如果采用这种型砂直接造型,型砂的坚实度不均匀,透气性等性能差。因此,调匀后的型砂必须经松砂或过筛才能使用。在机械化的铸造车间一般采用圆棒式或叶片式松砂机进行松砂处理。在百机械化的手工造型车间,常用移动式松砂机或用筛孔为5—8毫米的筛子过筛。

+查看全文

20 2020-04

覆膜砂铸造工艺过程要点
覆膜砂铸造工艺过程要点

覆膜砂铸造在铸造领域已有相当长的历史,铸件的产量也相当大;但采用覆膜砂铸造生产精密铸钢件时面临很多难题:粘砂(结疤)、冷隔、气孔。如何解决这些问题有待于我们去进一步探讨。 一、对覆膜砂的认识与了解(覆膜砂属于有机粘结剂型、芯砂) (1)覆膜砂的特点:具有适宜的强度性能;流动性好,制出的砂型、砂芯轮廓清晰,组织致密,能够制造出复杂的砂芯;砂型(芯)表面质量好,表面粗糙度可达Ra=6.3~12.5μm,尺寸精度可达CT7~CT9级;溃散性好,铸件容易清理。 (2)适用范围:覆膜砂既可制作铸型又可制作砂芯,覆膜砂的型或芯既可互相配合使用又可与其它砂型(芯)配合使用;不仅可以用于金属型重力铸造或低压铸造,也可以用于铁型覆砂铸造,还可以用于热法离心铸造;不仅可以用于铸铁、非铁合金铸件的生产,还可以用于铸钢件的生产。 二、覆膜砂的制备 1.覆膜砂组成 一般由耐火材料、粘结剂、固化剂、润滑剂及特殊添加剂组成。 (1)耐火材料是构成覆膜砂的主体。对耐火材料的要求是:耐火度高、挥发物少、颗粒较圆整、坚实等。一般选用天然擦洗硅砂。对硅砂的要求是:SiO2含量高(铸铁及非铁合金铸件要求大于90%,铸钢件要求大于97%);含泥量不大于0.3%(为擦洗砂)--[水洗砂含泥量规定小于;粒度①分布在相邻3~5个筛号上;粒形圆整,角形因素应不大于1.3;酸耗值不小于5ml。 (2)粘结剂普遍采用酚醛树脂。 (3)固化剂通常采用乌洛托品;润滑剂一般采用硬脂酸钙,其作用是防止覆膜砂结块,增加流动性。添加剂的主要作用是改善覆膜砂的性能。 (4)覆膜砂的基本配比 成分 配比(质量分数,%)说明:原砂 100 擦洗砂, 酚醛树脂 1.0~3.0 占原砂重 ,乌洛托品(水溶液2)10~15 占树脂重,硬脂酸钙 5~7 占树脂重,添加剂 0.1~0.5 占原砂重。1:2)10~15 占树脂重,硬脂酸钙 5~7 占树脂重,添加剂 0.1~0.5 占原砂重。 2.覆膜砂的生产工艺  覆膜砂的制备工艺主要有冷法覆膜、温法覆膜、热法覆膜三种,目前覆膜砂的生产几乎都是采用热覆膜法。热法覆膜工艺是先将原砂加热到一定温度,然后分别与树脂、乌洛托品水溶液和硬脂酸钙混合搅拌,经冷却破碎和筛分而成。由于配方的差异,混制工艺有所不同。目前国内覆膜砂生产线的种类很多,手工加料的半自动生产线约有2000~2300条,电脑控制的全自动生产线也已经有将近50条,有效提高了生产效率和产品稳定性。例如xx铸造有限公司的自动化可视生产线,其加料时间控制精确到0.1秒,加热温度控制精确到1/10℃,并且可以通过视频时时观察混砂状态,生产效率达到6吨/小时。 3.覆膜砂的主要产品类型  (1)  普通类覆膜砂   普通覆膜砂即传统覆膜砂,其组成通常由石英砂,热塑性酚醛树脂,乌洛托品和硬脂酸钙构成,不加有关添加剂,其树脂加入量通常在一定强度要求下相对较高,不具备耐高温,低膨胀、低发气等特性,适用于要求不高的铸件生产 (2)  高强度低发气类覆膜砂    特点:高强度、低膨胀、低发气、慢发气、抗氧化  简介:高强度低发气覆膜砂是普通覆膜砂的更新换代产品,通过加入有关特性的“添加剂”和采用新的配制工艺,使树脂用量大幅度下降,其强度比普通覆膜砂高30%以上,发气量显著降低,并能延缓发气速度,能更好地适应铸件生产的需要。该类覆膜砂主要适用于铸铁件中,中小铸钢、合金铸钢件的生产。目前该类覆膜砂有三个系列:GD-1高强度低发气覆膜砂;GD-2高强度低膨胀低发气覆膜砂;GD-3高强度低膨胀低发气抗氧化覆膜。 (3)  耐高温(类)覆膜砂(ND型)  特点:耐高温、高强度、低膨胀、低发气、慢发气、易溃散、抗氧化 简介:耐高温覆膜砂是通过特殊工艺配方技术生产出的具有优异高温性能(高温下强度高、耐热时间长、热膨胀量小、发气量低)和综合铸造性能的新型覆膜砂。该类覆膜砂特别适用于复杂薄壁精密的铸铁件(如汽车发动机缸体、缸盖等)以及高要求的铸钢件(如集装箱角和火车刹车缓;中器壳件等)的生产,可有效消除粘砂、变形、热裂和气孔等铸造缺陷。目前该覆膜砂有四个系列:VND-1耐高温覆膜砂. ND-2耐高温低膨胀低发气覆膜砂 ND-3耐高温低膨胀低发气抗氧化覆膜砂 ND-4耐高温高强底低膨胀低发气覆膜 (4)  易溃散类覆膜砂  具有较好的强度,同时具有优异的低温溃散性能,适用于生产有色金属铸件。 (5)  其它特殊要求覆膜砂  为适应不同产品的需要,开发出了系列特种覆膜砂如:离心铸造用覆膜砂、激冷覆膜砂、湿态覆膜砂、防粘砂、防脉纹、防橘皮覆膜砂等。  三、覆膜砂制芯主要工艺过程 加热温度200-300℃、固化时间30-150s、射砂压力0.15-0.60MPa。形状简单的砂芯、流动性好的覆膜砂可选用较低的射砂压力,细薄砂芯选择较低的加热温度,加热温度低时可适当延长固化时间等。覆膜砂所使用的树脂是酚醛类树脂。制芯工艺的优点:具有适宜的强度性能;流动性好;砂芯表面质量好(Ra=6.3-12.5μm);砂芯抗吸湿性强;溃散性好,铸件容易清理。 1、铸型(模具)温度 铸型温度是影响壳层厚度及强度的主要因素之一,一般控制在220~260℃,并根据下列原则选定:     (1)保证覆膜砂上的树脂软化及固化所需的足够热量;      (2)保证形成需要的壳厚且壳型(芯)表面不焦化;       (3)尽量缩短结壳及硬化时间,以提高生产率。 2、射砂压力及时间 射砂时间一般控制在3~10s,时间过短则砂型(芯)不能成型。射砂压力一般为0.6MPa左右;压力过低时,易造成射不足或疏松现象。3、硬化时间:硬化时间的长短主要取决于砂型(芯)的厚度与铸型的温度,一般在60~120s左右。时间过短,壳层未完全固化则强度低;时间过长,砂型(芯)表面层易烧焦影响铸件质量。覆膜砂造型(芯)工艺参数实例:序号图号 壳厚(㎜) 重量(㎏) 铸型温度(℃) 射砂时间(s)硬化时间(s) 1 (导向套)DN80-05 8~10 2.5~2.6220~240 2~3 60~80 2 (阀体)DN05-01 10~123.75~3.8 240~260 3~5 80~100 四、覆膜砂应用中存在的问题及解决对策 制芯的方法种类很多,总的可以划分为热固性方法和冷固性方法两大类,覆膜砂制芯属于热固性方法类。任何一种制芯方法都有其自身的优点和缺点,这主要取决于产品的质量要求、复杂程度、生产批量、生产成本、产品价格等综合因素来决定采用何种制芯方法。对铸件内腔表面质量要求高,尺寸精度要求高、形状复杂的砂芯采用覆膜砂制芯是非常有效的。例如:轿车发动机气缸盖的进排气道砂芯、水道砂芯、油道砂芯,气缸体的水道砂芯、油道砂芯,进气岐管、排气岐管的壳芯砂芯,液压阀的流道砂芯,汽车涡轮增压器气道砂芯等等。但是在覆膜砂使用中还常遇到一些问题,这里仅就工作中的体会略谈一二。 1、覆膜砂的强度和发气量的确定方法 在原砂质量和树脂质量一定的前提下,影响覆膜砂强度的关键因素主要取于酚醛树脂的加入量。酚醛树脂加入量多,则强度就提高,但发气量也增加,溃散性就降低。因此在生产应用中一定要控制覆膜砂的强度来减少发气量,提高溃散性,在强度标准的制订时定要找到一个平衡点。这个平衡点就是保证砂芯的表面质量及在浇注时不产生变形、不产生断芯前提下的强度。这样才能保证铸件的表面质量和尺寸精度,又可以减少发气量,减少铸造件气孔缺陷,提高砂芯的出砂性能。对砂芯存放,搬运过程中可以采用工位器具、砂芯小车,并在其上面铺有10mm~15mm厚的海绵,这样可以减少砂芯的损耗率。 2、覆膜砂砂芯的存放期 任何砂芯都会吸湿,特别是南方地区空气相对湿度大,必须对砂芯存放期在工艺文件上加以规定,利用精益生产先进先出的生产方式减少砂芯的存放量和存放周期。各企业应结合自己的厂房条件和当地的气候条件来确定砂芯的存放周期。 3、控制好覆膜砂的供货质量 覆膜砂进厂时必须附有供应商的质量保证资料,并且企业根据抽样标准进行检查,检查合格后方可入库。企业取样检测不合格时由质保和技术部门做出处理结果,是让步接受或向供应商退货。 4、合格的覆膜砂在制芯时发现砂芯断裂变形 制芯时砂芯的断裂变形通常会认为覆膜砂强度低造成的。实际上砂芯断裂和变形会涉及到许多生产过程。出现不正常情况,必须要查到真正的原因才能彻底解决。具体原因如下: (1)制芯时模具的温度和留模时间,关系到砂芯结壳硬化厚度是否满足工艺要求。工艺上所规定的工艺参数都需要有一个范围,这个范围需靠操作人员的技能来进行调整。在模具温度上限时留模时间可以取下限,模具温度在下限时留模时间取上限。对操作人员需要不断地培训提高操作技能。 (2)制芯时在模具上会粘有酚醛树脂和砂粒,必须进行及时清理并喷上脱模剂,否则会越积越多开模时会把砂芯拉断或变形。 (3)热芯盒模具静模上的弹簧顶杆,由于长期在高温状态下工作会产生弹性失效而造成砂芯断裂或变形。必须及时更换弹簧。 (4)动模和静模不平行或不在同一中心线上,合模时在油缸或气缸的压力作用下,定位销前端有一段斜度,模具还是会合紧,但在开模时动模和静模仍会恢复到原始状态使砂芯断裂或变形。在这种情况下射砂时会跑砂,砂芯的尺寸会变大。解决对策是及时调整模具的平行度和同轴度。 (5)在壳芯机上生产空心砂芯时,从砂芯中倒出尚未硬化的覆膜砂需要重新使用时,必须进行过筛并未用过的覆膜砂按3:7比例混合后使用,这样才能保证壳芯砂芯的表面质量和砂芯强度。

+查看全文

18 2020-04

淬火、回火、正火、退火,一文搞清楚
淬火、回火、正火、退火,一文搞清楚

什么叫淬火? 钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。 淬火的目的: 1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。 2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。 淬火冷却时,除需合理选用淬火介质外,还要有正确的淬火方法,常用的淬火方法,主要有单液淬火,双液淬火,分级淬火、等温淬火,局部淬火等。 钢铁工件在淬火后具有以下特点: ① 得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。 ② 存在较大内应力。 ③ 力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火 什么叫回火? 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的zui后一道工序,因而把淬火和回火的联合工艺称为zui终处理。淬火与回火的主要目的是: 1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。 2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。 3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。 4)改善某些合金钢的切削性能。 回火的作用在于: ① 提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。 ② 消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。 ③ 调整钢铁的力学性能以满足使用要求。 回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。这种现象称为二次硬化。 回火要求:用途不同的工件应在不同温度下回火,以满足使用中的要求。 ① 刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。低温回火后硬度变化不大,内应力减小,韧性稍有提高。 ② 弹簧在350~500℃下中温回火,可获得较高的弹性和必要的韧性。 ③ 中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。 钢在300℃左右回火时,常使其脆性增大,这种现象称为首类回火脆性。一般不应在这个温度区间回火。某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。这种现象称为第二类回火脆性。在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。 在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。 1、低温回火:150-250℃ ,M回,减少内应力和脆性,提高塑韧性,有较高的硬度和耐磨性。用于制作量具、刀具和滚动轴承等。 2、中温回火:350-500℃ ,T回,具有较高的弹性,有一定的塑性和硬度。用于制作弹簧、锻模等。 3、高温回火:500-650℃ ,S回,具有良好的综合力学性能。用于制作齿轮、曲轴等。 什么是正火? 正火是—种改善钢材韧性的热处理。将钢构件加热到Ac3温度以上30〜50℃后,保温一段时间出炉空冷。主要特点是冷却速度快于退火而低于淬火,正火时可在稍快的冷却中使钢材的结晶晶粒细化,不但可得到满意的强度,而且可以明显提高韧性(AKV值),降低构件的开裂倾向。—些低合金热轧钢板、低合金钢锻件与铸造件经正火处理后,材料的综合力学性能可以大大改善,而且也改善了切削性能。 正火有以下目的和用途: ① 对亚共析钢,正火用以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。 ② 对过共析钢,正火可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。 ③ 对低碳深冲薄钢板,正火可以消除晶界的游离渗碳体,以改善其深冲性能。 ④ 对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。 ⑤ 对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。 ⑥ 高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细化。 ⑦ 对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织,再经高温回火,用于400~550℃时具有良好的抗蠕变能力。 ⑧ 除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体,提高球墨铸铁的强度。 由于正火的特点是空气冷却,因而环境气温、堆放方式、气流及工件尺寸对正火后的组织和性能均有影响。正火组织还可作为合金钢的一种分类方法。通常根据直径为25毫米的试样加热到900℃后,空冷得到的组织,将合金钢分为珠光体钢、贝氏体钢、马氏体钢和奥氏体钢。 什么是退火? 退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。退火热处理分为完全退火,不完全退火和去应力退火。退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。 退火的目的在于: ① 改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。 ② 软化工件以便进行切削加工。 ③ 细化晶粒,改善组织以提高工件的机械性能。 ④ 为zui终热处理(淬火、回火)作好组织准备。 常用的退火工艺有: ① 完全退火。用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。 ② 球化退火。用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。 ③ 等温退火。用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体zui不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降低。 ④ 再结晶退火。用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。 ⑤ 石墨化退火。用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右,保温一定时间后适当冷却,使渗碳体分解形成团絮状石墨。 ⑥ 扩散退火。用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。 ⑦ 去应力退火。用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。

+查看全文

16 2020-04

8个影响热处理变形的因素
8个影响热处理变形的因素

一、变形的原因 钢的变形主要原因是钢中存在内应力或者外部施加的应力。内应力是因温度分布不均匀或者相变所致,残余应力也是原因之一。外应力引起的变形主要是由于工件自重而造成的“塌陷”,在特殊情况下也应考虑碰撞被加热的工件,或者夹持工具夹持所引起的凹陷等。变形包括弹性变形和塑性变形两种。尺寸变化主要是基于组织转变,故表现出同样的膨胀和收缩,但当工件上有孔穴或者复杂形状工件,则将导致附加的变形。如果淬火形成大量马氏体则发生膨胀,如果产生大量残余奥氏体则相应的要收缩。此外,回火时一般发生收缩,而出现二次硬化现象的合金钢则发生膨胀,如果进行深冷处理,则由于残余奥氏体的马氏体化而进一步膨胀,这些组织的比容都随着含碳量的增加而增大,故含碳量增加也使尺寸变化量增大。 二、淬火变形的主要发生时段 1.加热过程:工件在加热过程中,由于内应力逐渐释放而产生变形。 2.保温过程:以自重塌陷变形为主,即塌陷弯曲。 3.冷却过程:由于不均匀冷却和组织转变而至变形。 三、加热与变形 当加热大型工件时,存在残余应力或者加热不均匀,均可产生变形。残余应力主要来源于加工过程。当存在这些应力时,由于随着温度的升高,钢的屈服强度逐渐下降,即使加热很均匀,很轻微的应力也会导致变形。   一般,工件的外缘部位残余应力较高,当温度的上升从外部开始进行时,外缘部位变形较大,残余应力引起的变形包括弹性变形和塑性变形两种。   加热时产生的热应力和想变应力都是导致变形的原因。加热速度越快、工件尺寸越大、截面变化越大,则加热变形越大。热应力取决于温度的不均匀分布程度和温度梯度,它们都是导致热膨胀发生差异的原因。如果热应力高于材料的高温屈服点,则引起塑性变形,这种塑性变形就表现为“变形”。   相变应力主要源于相变的不等时性,即材料一部分发生相变,而其它部分还未发生相变时产生的。加热时材料的组织转变成奥氏体发生体积收缩时可出现塑性变形。如果材料的各部分同时发生相同的组织转变,则不产生应力。为此,缓慢加热可以适当降低加热变形,zui好采用预热。   此外,由于加热中因自重而出现“塌陷”变形的情况非常多,加热温度越高,加热时间越长,“塌陷”现象越严重。 四、冷却与变形   冷却不均时将产生热应力导致变形发生。因工件的外缘和内部存在冷却速度差异,该热应力是不可避免的,淬火情况下,热应力与组织应力叠加,变形更为复杂。加之组织的不均匀、脱碳等,还会导致相变点出现差异,相变的膨胀量也有所不同。   总之,“变形”是相变应力和热应力共同所致,但并非全部应力都消耗在变形上,而是一部分作为残余应力存在于工件中,这种应力就是导致时效变形和时效裂纹的原因。 因冷却而导致的变形表现为以下几种形式: 1.件急冷初期,急冷的一侧凹陷,然后转为凸起,结果快冷的一面凸起,这种情况属于热应力引起的变形大于相变引起的变形。 2.由热应力所引起的变形是钢料趋于球形化,而由相变应力所引起的变形则使之趋于绕线轴状。因此淬火冷却所致的变形表现为两者的结合,按照淬火方式的不同,表现出不同的变形。 3. 仅对内孔部分淬火时,内孔收缩。将整个环形工件加热整体淬火时,其外径总是增大,而内径则根据尺寸的不同时涨时缩,一般内径大时,内孔涨大,内径小时,内孔收缩 五、冷处理与变形   冷处理促进马氏体转变,温度较低,产生的变形比淬火冷却要小,但此时产生的应力较大,由于残余应力、相变应力和热应力等的叠加容易导致开裂。 六、回火与变形   工件在回火过程中由于内应力的均匀化、减小甚至消失,加上组织发生变化,变形趋于减小,但同时,一旦出现变形,也是很难矫正的。为了矫正这种变形,多采用加压回火或喷丸硬化等方法。 七 、重复淬火与变形   通常情况下,一次淬火后的工件未经过中间退火而进行重复淬火,将增大变形。重复淬火引起的变形,经过重复淬火,其变形累加而趋于球状,容易产生龟裂,但形状相对稳定了,不再容易产生变形了,因此重复淬火前应增加中间退火,重复淬火次数应小于等于2次(不含初次淬火)。 八、残余应力与变形   加热过程中,在450℃左右,钢由弹性体转变为塑性体,因此很容易呈上升塑性变形。同时,残余应力在约高于此温度时也将因再结晶而消失。因此,快速加热时,由于工件内外部存在温度差,外部达到450℃变成了塑性区,受而内部温度较低处存在残余应力作用而发生变形,冷却后,该区域就是出现变形的地方。由于实际生产过程中,很难实现均匀、缓慢加热,淬火前进行消除应力退火是非常重要的,除了通过加热消除应力外,对于大型零件采用振动消除应力也是有效的。

+查看全文

15 2020-04

知识篇——球墨铸铁件夹渣缺陷 浇注系统角色重
知识篇——球墨铸铁件夹渣缺陷 浇注系统角色重

球墨铸铁(NodularCastIron)是一种具有优良力学性能的金属材料,通过在铁液中加入球化剂和孕育剂,让石墨呈球状形核并长大而获得。20世纪40年代,现代球墨铸铁由美国国际锡公司(INCO)青年科研人员K.D.Millis首先研究成功。球墨铸铁在力学性能、物理性能、工艺性能、使用性能上具有独特的优势,生产工艺简单,成本低廉,在机械、冶金、矿山、纺织、汽车及船舶等领域应用广泛。 生产球墨铸铁时夹渣是zui常见的缺陷,其多出现在铸件浇注位置的上平面或型芯上表面部位。夹渣缺陷严重影响铸件的力学性能,特别是韧性和屈服强度,导致承压部位发生渗漏。 笔者所在单位生产的一种发电设备铸件前期经常出现铸件夹渣缺陷而报废,针对此缺陷进行了改进。 1.原工艺及缺陷状况 铸件重量为4500kg,材料为QT400-18,呋喃树脂自硬砂造型。采用15t/h工频电炉熔炼,化学成分为:wC=3.5%~3.7%,wS=2.2%~2.7%,wMn=0.3%~0.47%,wP≤0.06%,wS≤0.2%,浇注温度为1350~1380℃。浇注系统采用半封闭式、横浇道在分型面的环形底注工艺,内浇道为4道φ35mm的陶瓷管,直浇道为φ80mm,横浇道截面为:70/80mm×100mm,截面比为:F直:F横:F内=1∶2.99∶0.77,工艺方案如图1所示。这样设计出来的铸件缺陷主要为夹渣,位置在法兰背面和轴承上表面,形状不规则,无金属光泽,用渗透液或磁粉检测,有时用肉眼即可发现,如图2所示。 图1 工艺方案 图2 夹渣缺陷分布 2.缺陷原因分析 (1)熔炼或球化处理后,加入的熔剂和形成的熔渣在浇注时随金属液一起注入型腔。 (2)金属液在浇注过程中镁、稀土、硅、锰、铁等二次氧化,产生的金属氧化物和硫化物、游离石墨等上浮到铸件上表面或滞留在铸件内的死角和砂芯下表面等处。 原工艺该铸件的浇注压头为2.5m,铁液从浇口杯进入浇注系统后,直接由内浇道底返进入底法兰,进流速度大,约0.7m/s,进入型腔的铁液紊流严重,且严重卷气,因此铸件表面出现大量的渣,造成该产品的废品率超过10%。 (3)由于含硫量过高,使金属液含有大量硫化物,浇注后在铸件内部形成渣。 (4)金属液中各组元(碳、锰、硫、硅、铝、钛)之间或这些组元与氮、氧之间发生化学反应,其氧化物与炉衬、包衬、砂型壁或涂料之间发生界面反应形成夹渣。 3.改进方案 (1)熔炼时对原材料进行分拣,保证干燥、清洁、无锈蚀。 (2)提高铁液出炉温度和球化处理温度,对浇包进行充分烘烤。 (3)金属液在浇包内应静置一段时间,以利于渣上浮。 (4)降低原铁液含硫量,在保证球化前提下,尽可能减少球墨铸铁的残留镁含量。 (5)浇注系统改进。为保证铁液在充填型腔的过程中平稳、流畅,按大孔出流理论对浇注系统进行了改进,如图3所示。采用开放式浇注系统,通过增大进流截面降低进流速度。铸件整体分散进流,快速充型,保证浇口杯、直浇道及时充满。 图3 改进后的浇注系统 该铸件重4500kg,浇注重量6000kg,根据相关公式计算的浇注时间为60s,阻流截面积为52cm2,即设计的开放式浇注系统的直浇道截面积为52cm2。按照标准的陶瓷管,则选择φ80mm的陶瓷管,截面积是50.24cm2,按照推荐的浇注系统比例,设计的横浇道截面形状是矩形(9cm×6cm),则面积是108cm2,内浇道是13道φ35mm的陶瓷管,截面积是125cm2,则zui终的截面比是F直:F横:F内=1∶2.15∶2.49。 根据上面计算的参数计算得进流速度为0.28m/s,进流速度降低很多,是原工艺进流速度的40%。充型平稳,避免紊流,大大降低了铁液二次氧化的机会,从而可以减少夹渣缺陷。 4.改进后验证 采用以上措施连续生产15件,铸件没有再出现法兰和轴承上表面部位夹渣缺陷,改进有效。类似的方法在其他产品上运用,也有明显效果。 5.结语 大型球墨铸铁件易于在浇注位置上表面以及铁液流动的一些死角区域产生夹渣缺陷,这些缺陷可以通过熔炼控制和浇注系统的改进来解决。浇注系统形式以及参数选择应能保证铁液平稳充型,为此浇注系统各组成部分面积、浇注时间需按照内浇道低速进流、铸件整体快速充满的原则来计算。

+查看全文

14 2020-04

热处理工艺中淬火的常用十种方法
热处理工艺中淬火的常用十种方法

热处理工艺中淬火的常用方法有十种,分别是单介质(水、油、空气)淬火;双介质淬火;马氏体分级淬火;低于Ms点的马氏体分级淬火法;贝氏体等温淬火法;复合淬火法;预冷等温淬火法;延迟冷却淬火法;淬火自回火法;喷射淬火法等。        一、单介质(水、油、空气)淬火   单介质(水、油、空气)淬火:把已加热到淬火温度的工件淬人一种淬火介质,使其完全冷却。这种是zui简单的淬火方法,常用于形状简单的碳钢和合金钢工件。淬火介质根据零件传热系数大小、淬透性、尺寸、形状等进行选择。      二、双介质淬火   双介质淬火:把加热到淬火温度的工件,先在冷却能力强的淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到不同淬火冷却温度区间,并有比较理想的淬火冷却速度。用于形状复杂件或高碳钢、合金钢制作的大型工件,碳素工具钢也多采用此法。常用冷却介质有水-油、水-硝盐、水-空气、油-空气,一般用水作快冷淬火介质,用油或空气作慢冷淬火介质,较少采用空气。   三、马氏体分级淬火   马氏体分级淬火:钢材奥氏体化,随之浸入温度稍高或稍低于钢的上马氏点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,过冷奥氏体缓慢转变成马氏体的淬火工艺。一般用于形状复杂和变形要求严的小型工件,高速钢和高合金钢工模具也常用此法淬火。   四、低于Ms点的马氏体分级淬火法   低于Ms点的马氏体分级淬火法:浴槽温度低于工件用钢的Ms而高于Mf时,工件在该浴槽中冷却较快,尺寸较大时仍可获得和分级淬火相同的结果。常用于尺寸较大的低淬透性钢工件。   五、贝氏体等温淬火法   贝氏体等温淬火法:将工件淬入该钢下贝氏体温度的浴槽中等温,使其发生下贝氏体转变,一般在浴槽中保温30~60min。数控微信公号cncdar贝氏体等温淬火工艺主要三个步骤:①奥氏体化处理;②奥氏体化后冷却处理;③贝氏体等温处理;常用于合金钢、高碳钢小尺寸零件及球墨铸铁件。   六、复合淬火法   复合淬火法:先将工件急冷至Ms以下得体积分数为10%~30%的马氏体,然后在下贝氏体区等温,使较大截面工件得到马氏体和贝氏体组织,常用于合金工具钢工件。   七、预冷等温淬火法   预冷等温淬火法:又称升温等温淬火,零件先在温度较低(大于Ms)浴槽中冷却,然后转入温度较高的浴槽中,使奥氏体进行等温转变。适用于淬透性较差的钢件或尺寸较大又必须进行等温淬火的工件。   八、延迟冷却淬火法   延迟冷却淬火法:零件先在空气、热水、盐浴中预冷到稍高于Ar3或Ar1温度,然后进行单介质淬火。常用于形状复杂各部位厚薄悬殊及要求变形小的零件。   九、淬火自回火法   淬火自回火法:将被处理工件全部加热,但在淬火时仅将需要淬硬的部分(常为工作部位)浸入淬火液冷却,数控微信公号cncdar待到未浸入部分火色消失的瞬间,立即取出在空气中冷却的淬火工艺。淬火自回火法利用心部未全部冷透的热量传到表面,使表面回火。常用于承受冲击的工具如錾子、冲子、锤子等。   十、喷射淬火法   喷射淬火法:向工件喷射水流的淬火方法,水流可大可小,根据所要求的淬火深度而定。喷射淬火法不会在工件表面形成蒸汽膜,这样就能够保证得到比昔通水中淬火更深的淬硬层。主要用于局部表面淬火。

+查看全文

13 2020-04

知识篇——球铁熔炼控制六大步,非常关键!
知识篇——球铁熔炼控制六大步,非常关键!

第1步 材料的选择       铁素体球铁的生产,选择高纯的原材料是非常必要的,原材料中的Si、Mn、S、P含量要少(Si<1.0%, Mn<0.3% S<0.03%,P<0.03%),对Cu、Cr、Mo等一些合金元素要严格控制含量。由于很多微量元素对球化衰退zui为敏感,如,钨、锑、锡、钛、钒等。钛对球化影响很大应加以控制,但钛高是我国生铁的特点,这主要与生铁的冶金工艺有关。 第2步 脱硫       原铁液含硫量决定球化剂的加入量,原铁液中的含硫量越高,则球化剂的加入量越多,否则不能获得球化良好的铸件。球化处理前原铁液中的S含量控制在0.02%以下。对球化处理前原铁液的含硫量高时,必须进行脱硫处理。  第3步  Mo合金处理        Mo合金化处理,采用涡流工艺,加入量控制在0.5~1.0%,具体根据zui终Mo含量进行调整。为了确保Mo的有效吸收,对合金的粒度应该严格要求。  第4步 球化剂和球化处理        生产厚大断面球铁件时,为了提高抗衰退能力,在球化剂中加入一定比例的重稀土,这样既可以保证起球化作用的Mg的含量,同时也可以增加具有较高抗衰退能力的重稀土元素,如,钇等。根据国内很多工厂的试验和生产实践,采用Re—Mg与钇基重稀土的复合球化剂作为厚大断面球铁件生产的球化剂是非常理想的,使用这种球化剂在实际生产应用过程中也取得了很好的效果。据有关资料表明,钇的球化能力仅次于镁,但其抗衰退能力比镁强的多,且不回硫,钇可过量加入,高碳孕育良好时,不会出现渗碳体。另外,钇与磷可形成高熔点夹杂物,使磷共晶减少并弥散,从而进一步提高球铁的延伸率。在球化处理时,为了提高镁的吸收率,控制反应速度及提高球化效果,采用特有的球化工艺。对球化处理的控制,主要是在反应速度上进行控制,控制球化反应时间在2分钟左右。       对此采用中低Mg、Re球化剂和钇基重稀土的复合球化剂,球化剂的加入量根据残留Mg量确定。        球化衰退防止:球化衰退的原因一方面和Mg、RE元素由铁液中逃逸减少有关,另一方面也和孕育作用不断衰退有关,为了防止球化衰退,采取以下措施:       A、铁液中应保持有足够的球化元素含量;       B、降低原铁液的含硫量,并防止铁液氧化;       C、缩短铁液经球化处理后的停留时间;       D、铁液经球化处理并扒渣后,为防止 Mg、RE元素逃逸,可用覆盖剂将铁液表面覆盖严,隔绝空气以减少元素的逃逸。  第5步 孕育剂和孕育处理         球化处理是球铁生产的基础,孕育处理是球铁生产的关键,孕育效果决定了石墨球的直径、石墨球数和石墨球的园整度,为了保证孕育效果,孕育处理采用多级孕育处理。孕育处理越接近浇注,孕育效果越好。从孕育到浇注需要一定的时间,该时间越长,孕育衰退就越严重。为了防止或减少孕育衰退,采用以下措施:       A、使用长效孕育剂(含有一定量的钡、锶、锆或锰的硅基孕育剂);       B、采用多级孕育处理(包内孕育、孕育槽孕育、水口瞬时孕育等);       C、尽量缩短孕育到浇注时间。       孕育剂的加入量控制在0.6~1.4%,孕育剂加入量过少,直接造成孕育效果差,孕育量过大,导致铸件夹杂。  第6步 浇注工艺控制          浇注应采用快浇,平稳注入的原则。为了提高瞬时孕育的均匀性及防止熔渣进入型腔,水口盆的总容量应与铸件的毛重相当,浇注时将孕育剂放入水口盆中,将铁水一次全部注入水口,使铁水与孕育剂充分混合,扒去表面浮渣,提出水口堵浇注。

+查看全文

10 2020-04

123456...1011 共102条 11页,到第 确定