详情咨询热线: 15037927235 0379-69581002

新闻资讯
当前位置:首页 > 新闻资讯

铸造模具五大缺陷及其解决方案
铸造模具五大缺陷及其解决方案

缺陷一:铸造缩孔   主要原因有合金凝固收缩产生铸造缩孔和合金溶解时吸收了大量的空气中的氧气、氮气等,合金凝固时放出气体造成铸造缩孔。  解决的办法: 1)放置储金球。 2)加粗铸道的直径或减短铸道的长度。 3)增加金属的用量。 4)采用下列方法,防止组织面向铸道方向出现凹陷。 a.在铸道的根部放置冷却道。 b.为防止已熔化的金属垂直撞击型腔,铸道应成弧形。 c.斜向放置铸道。 缺陷二:铸件表面粗糙不光洁缺陷   型腔表面粗糙和熔化的金属与型腔表面产生了化学反应,主要体现出下列情况。 1)包埋料粒子粗,搅拌后不细腻。 2)包埋料固化后直接放入茂福炉中焙烧,水分过多。 3)焙烧的升温速度过快,型腔中的不同位置产生膨胀差,使型腔内面剥落。 4)焙烧的zui高温度过高或焙烧时间过长,使型腔内面过于干燥等。 5)金属的熔化温度或铸圈的焙烧的温度过高,使金属与型腔产生反应,铸件表面烧粘了包埋料。 6)铸型的焙烧不充分,已熔化的金属铸入时,引起包埋料的分解,发生较多的气体,在铸件表面产生麻点。 7)熔化的金属铸入后,造成型腔中局部的温度过高,铸件表面产生局部的粗糙。   解决的办法: a.不要过度熔化金属。 b.铸型的焙烧温度不要过高。 c.铸型的焙烧温度不要过低(磷酸盐包埋料的焙烧温度为800度-900度)。 d.避免发生组织面向铸道方向出现凹陷的现象。 e.在蜡型上涂布防止烧粘的液体。 缺陷三:铸件发生龟裂缺陷   有两大原因,一是通常因该处的金属凝固过快,产生铸造缺陷(接缝);二是因高温产生的龟裂。 1)对于金属凝固过快,产生的铸造接缝,可以通过控制铸入时间和凝固时间来解决。铸入时间的相关因素:蜡型的形状。铸到的粗细数量。铸造压力(铸造机)。包埋料的透气性。凝固时间的相关因素:蜡型的形状。铸圈的zui高焙烧温度。包埋料的类型。金属的类型。铸造的温度。 2)因高温产生的龟裂,与金属及包埋料的机械性能有关。下列情况易产生龟裂:铸入温度高易产生龟裂;强度高的包埋料易产生龟裂;延伸性小的镍烙合金及钴烙合金易产生龟裂。   解决的办法:   使用强度低的包埋料;尽量降低金属的铸入温度;不使用延展性小的。较脆的合金。 缺陷四:球状突起缺陷   主要是包埋料调和后残留的空气(气泡)停留在蜡型的表面而造成。 1)真空调和包埋料,采用真空包埋后效果更好。 2)包埋前在蜡型的表面喷射界面活性剂(例如日进公司的castmate) 3)先把包埋料涂布在蜡型上。 4)采用加压包埋的方法,挤出气泡。 5)包埋时留意蜡型的方向,蜡型与铸道连接处的下方不要有凹陷。 6)防止包埋时混入气泡。铸圈与铸座。缓冲纸均需密合;需沿铸圈内壁灌注包埋料(使用震荡机)。 7)灌满铸圈后不得再震荡。 缺陷五:铸件的飞边缺陷   主要是因铸圈龟裂,熔化的金属流入型腔的裂纹中。   解决的办法: 1)改变包埋条件:使用强度较高的包埋料。石膏类包埋料的强度低于磷酸盐类包埋料,故使用时应谨慎。尽量使用有圈铸造。无圈铸造时,铸圈易产生龟裂,故需注。 2)焙烧的条件:勿在包埋料固化后直接焙烧(应在数小时后再焙烧)。应缓缓的升温。焙烧后立即铸造,勿重复焙烧铸圈。

+查看全文

16 2020-03

三种铸造工艺方法分析及其优缺点
三种铸造工艺方法分析及其优缺点

普通砂型铸造的基本原材料是铸造砂和型砂粘结剂。常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 砂型铸造用的是很流行和很简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 1.加工余量 所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。2.起模斜度 为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。3.铸造圆角 为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。4.型芯头 为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计出型芯头。5.收缩余量 由于铸件在浇注后的冷却收缩,制作模样时要加上这部分收缩尺寸。 优点: 1.粘土的资源丰富、价格便宜。使用过的粘土湿砂经适当的砂处理后,绝大部分均可回收再用;2.制造铸型的周期短、工效高;3.混好的型砂可使用的时间长;4.适应性很广。小件、大件,简单件、复杂件,单件、大批量都可采用;缺点及局限性:1.因为每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;2.铸型的刚度不高,铸件的尺寸精度较差;3.铸件易于产生冲砂、夹砂、气孔等缺陷。 压铸工艺原理是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。  a)合型浇注        b) 压射            c) 开型顶件 冷、热室压铸是压铸工艺的两种基本方式。冷室压铸中金属液由手工或自动浇注装置浇入压室内,然后压射冲头前进,将金属液压入型腔。在热室压铸工艺中,压室垂直于坩埚内,金属液通过压室上的进料口自动流入压室。压射冲头向下运动,推动金属液通过鹅颈管进入型腔。金属液凝固后,压铸模具打开,取出铸件,完成一个压铸循环。 熔模铸造用蜡料做模样时,熔模铸造又称"失蜡铸造"。熔模铸造通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。由于模样广泛采用蜡质材料来制造,故常将熔模铸造称为“失蜡铸造”。 可用熔模铸造法生产的合金种类有碳素钢、合金钢、耐热合金、不锈钢、精密合金、永磁合金、轴承合金、铜合金、铝合金、钛合金和球墨铸铁等。 熔模铸造工艺过程 优点: 1.尺寸精度较高。一般可达CT4-6(砂型铸造为CT10~13,压铸为CT5~7); 2.可以提高金属材料的利用率。熔模铸造能显著减少产品的成形表面和配合表面的加工量,节省加工台时和刃具材料的消耗; 3.能极大限度地提高毛坯与零件之间的相似程度,为零件的结构设计带来很大方便。铸造形状复杂的铸件熔模铸造能铸出形状十分复杂的铸件,也能铸造壁厚为0.5mm、重量小至1g的铸件,还可以铸造组合的、整体的铸件; 4.不受合金材料的制约。熔模铸造法可以铸造碳钢、合金钢、球墨铸铁、铜合金和铝合金铸件,还可以铸造高温合金、镁合金、钛合金以及贵金属等材料的铸件。对于难以锻造、焊接和切削加工的合金材料,特别适宜于用精铸方法铸造; 5.生产灵活性高、适应性强熔模铸造既适用于大批量生产,也适用小批量生产甚至单件生产。 缺点及局限性: 铸件尺寸不能太大工艺过程复杂铸件冷却速度慢。熔模铸造在所有毛坯成形方法中,工艺很复杂,铸件成本也很高,但是如果产品选择得当,零件设计合理,高昂的铸造成本由于减少切削加工、装配和节约金属材料等方面而得到补偿,则熔模铸造具有良好的经济性。

+查看全文

14 2020-03

知识篇——铸造模具五大缺陷及其解决方案
知识篇——铸造模具五大缺陷及其解决方案

缺陷一:铸造缩孔   主要原因有合金凝固收缩产生铸造缩孔和合金溶解时吸收了大量的空气中的氧气、氮气等,合金凝固时放出气体造成铸造缩孔。  解决的办法: 1)放置储金球。 2)加粗铸道的直径或减短铸道的长度。 3)增加金属的用量。 4)采用下列方法,防止组织面向铸道方向出现凹陷。 a.在铸道的根部放置冷却道。 b.为防止已熔化的金属垂直撞击型腔,铸道应成弧形。 c.斜向放置铸道。 缺陷二:铸件表面粗糙不光洁缺陷   型腔表面粗糙和熔化的金属与型腔表面产生了化学反应,主要体现出下列情况。 1)包埋料粒子粗,搅拌后不细腻。 2)包埋料固化后直接放入茂福炉中焙烧,水分过多。 3)焙烧的升温速度过快,型腔中的不同位置产生膨胀差,使型腔内面剥落。 4)焙烧的温度过高或焙烧时间过长,使型腔内面过于干燥等。 5)金属的熔化温度或铸圈的焙烧的温度过高,使金属与型腔产生反应,铸件表面烧粘了包埋料。 6)铸型的焙烧不充分,已熔化的金属铸入时,引起包埋料的分解,发生较多的气体,在铸件表面产生麻点。 7)熔化的金属铸入后,造成型腔中局部的温度过高,铸件表面产生局部的粗糙。   解决的办法: a.不要过度熔化金属。 b.铸型的焙烧温度不要过高。 c.铸型的焙烧温度不要过低(磷酸盐包埋料的焙烧温度为800度-900度)。 d.避免发生组织面向铸道方向出现凹陷的现象。 e.在蜡型上涂布防止烧粘的液体。 缺陷三:铸件发生龟裂缺陷   有两大原因,一是通常因该处的金属凝固过快,产生铸造缺陷(接缝);二是因高温产生的龟裂。 1)对于金属凝固过快,产生的铸造接缝,可以通过控制铸入时间和凝固时间来解决。铸入时间的相关因素:蜡型的形状。铸到的粗细数量。铸造压力(铸造机)。包埋料的透气性。凝固时间的相关因素:蜡型的形状。铸圈的***高焙烧温度。包埋料的类型。金属的类型。铸造的温度。 2)因高温产生的龟裂,与金属及包埋料的机械性能有关。下列情况易产生龟裂:铸入温度高易产生龟裂;强度高的包埋料易产生龟裂;延伸性小的镍烙合金及钴烙合金易产生龟裂。   解决的办法:   使用强度低的包埋料;尽量降低金属的铸入温度;不使用延展性小的。较脆的合金。 缺陷四:球状突起缺陷   主要是包埋料调和后残留的空气(气泡)停留在蜡型的表面而造成。 1)真空调和包埋料,采用真空包埋后效果更好。 2)包埋前在蜡型的表面喷射界面活性剂(例如日进公司的castmate) 3)先把包埋料涂布在蜡型上。 4)采用加压包埋的方法,挤出气泡。 5)包埋时留意蜡型的方向,蜡型与铸道连接处的下方不要有凹陷。 6)防止包埋时混入气泡。铸圈与铸座。缓冲纸均需密合;需沿铸圈内壁灌注包埋料(使用震荡机)。 7)灌满铸圈后不得再震荡。 缺陷五:铸件的飞边缺陷   主要是因铸圈龟裂,熔化的金属流入型腔的裂纹中。   解决的办法: 1)改变包埋条件:使用强度较高的包埋料。石膏类包埋料的强度低于磷酸盐类包埋料,故使用时应谨慎。尽量使用有圈铸造。无圈铸造时,铸圈易产生龟裂,故需注。 2)焙烧的条件:勿在包埋料固化后直接焙烧(应在数小时后再焙烧)。应缓缓的升温。焙烧后立即铸造,勿重复焙烧铸圈。

+查看全文

13 2020-03

顺祥机械设备产品解读--距齿轨
顺祥机械设备产品解读--距齿轨

距齿轨 也叫销轨、齿轨条 适用于煤矿井下用刮板输送机、 转载机的中部槽部分。 用途 齿轨、销轨安放在齿轨座上是采煤机的行走轨道,齿轨座焊接在中部槽槽帮上,齿轨座与齿轨通过齿轨销进行链接。 结构 齿轨、销轨按节距规格可以分为:126节距齿轨、147节距齿轨。 齿轨、销轨按节距数可以分为:3节距齿轨、4节距齿轨、5节距齿轨、6节距齿轨、7节距齿轨、8节距齿轨、9节距齿轨。 工艺 齿轨、销轨按制作方式可以分为:锻造齿轨和锻打齿轨。 分类 齿轨、销轨按生产主机厂可以分为:张家口齿轨、西北奔牛齿轨、山西煤机厂齿轨、山东矿机齿轨、郑煤机齿轨等。 常见齿轨、销轨型号有:115S-01、01TXG126-5等。 服务保证 品质保证:视产品质量如生命。我公司产品严格按照国家质量管理体系认证GB/T19001 / ISO9001:2015标准,采用先进的设计理念,使用现代化生产设备(如数控双边焊机、智能机械手、加工中心等),完善的产品检测体系,保证产品质量合格。 价格保证:市场优惠价格。我公司产品材料均选用国内外质量品牌,在保证品质的基础上,提供市场优惠价格。 交货保证:按照客户的要求,保证按时交货。有特殊要求,需提前完工的,公司可组织生产力量,满足客户需求。 售后保证:完善的售后团队。我公司以快速有效的信息反馈体系,确保为客户提供***的维修服务。提供完整的产品问题分析和解决办法,延长产品使用寿命,帮企业节省采购成本。

+查看全文

12 2020-03

消失模铸造“一看就会,一做就废”的问题!看完就能轻松解决!
消失模铸造“一看就会,一做就废”的问题!看完就能轻松解决!

在铸造这个行业,成本高,利润低,赚的都是血汗钱!大多数的铸造老板都在为降本增效,提高利润而发愁。也有不少用传统砂型铸造的工厂,开始尝试转型,使用操作更简单,成本更低的消失模工艺生产。 据一位铸造老板反馈,国内的消失模铸造工艺自1988年开始,实现工业化生产以来,历经30多年的探索研究,工艺方面,还是专用设备方面,都已进入成熟阶段,正是介入的大好时机。 消失模铸造以其精度高,成本低,劳动强度低,做业环境好等优势,在某些产品领域中逐渐取代粘土砂铸造、树脂砂铸造、V法铸造等铸造工艺,成为铸造行业的热门工艺。和传统的砂型铸造相比,消失模铸造工艺,有以下9个优点! 1、 消失模铸造不需要分型和下芯子,所以特别适用于几何形状复杂、传统铸造难以完成的箱体类、壳体类铸件、筒管类铸件。 2、 消失模铸用干砂埋模型,可反复使用,工业垃圾少,成本明显降低。 3、 消失模铸造没有飞边毛刺,清理工时可以减少80%以上。 4、 消失模铸造可以一线多用,不仅可以做铸铁、球铁,还可以同时做铸钢件,所以转项灵活,适用范围广。 5、 消失模铸造不仅适用批量大的铸造件,进行机械化操作,也适用于批量小的产品手工拼接模型。 6、 消失模铸造如果投资到位,可以实现空中无尘,地面无砂,劳动强度低,做业环境好,将以男工为主的行业变成了以女工为主的行业。 7、 消失模铸造取消了造型工序,有一定文化水平的人,经过短时间的培训就可以成为熟练的工人,所以,特别适用技术力量缺乏的地区和企业。 8、 消失模铸造适合群铸,干砂埋型,脱砂容易,在某些材质的铸件还可以根据用途进行余热处理。 9、 消失模铸造不仅适用于中小件,更适用做大型铸件,如:机床床身、大口径管件,大型冷冲模件,大型矿山设备配件等,因为模型制作周期短、成本低、生产周期也短,所以特别受到好评。 不过也有很多干铸造的朋友反映,消失模工艺看着简单,实际操作过程中还是会出现很多问题,“一看一会,一做就废”的问题,一直很难解决。

+查看全文

16 2020-01

现代铸造熔炼铁水净化技术
现代铸造熔炼铁水净化技术

长时间以来,为了减少铁水中的夹杂物从而获得纯净铁水一般使用三种方法:高温熔炼、过滤网、聚渣剂。高温熔炼能清除铁水中的夹杂物吗?在炼钢生产中,钢水温度高达1700度左右,钢水中的夹杂物尚需使用“炉外精炼技术”才可以去除,而铁水***高温度无非1500度左右,怎么可能清除铁水中的夹杂物呢? 过滤网能清除铁水中的夹杂物吗?过滤网受孔洞大小***,只能过滤颗粒较大的宏观类浮渣,假若其孔洞小到可以过滤以微米计算的微观夹杂物,铁水如何顺畅通过而进入铸型?因此我们认为:过滤网只能过滤扒渣未尽的铁水表面浮渣。 聚渣剂只能聚集铁水表面浮渣而方便扒出,是一种常识,无须多议。因此,使用“高温熔炼”、“过滤网”、“聚渣剂”等传统手段,只能解决铁水表面浮渣,对于混熔或悬浮在铁水中的各种非金属夹杂物,事实上是处于束手无策的状态。 基于上述认识,我们根据“铁水净化理论” ,结合在铸造生产中,使用铁神一号净化剂的实际经验,总结出现代铁水净化技术,希望达到三个目的: 一是统一思想。使广大铸造工作者认识到:要生产优质铸件,必须获得纯净铁水; 二是使尽可能多的铸造企业掌握和使用现代铁水净化技术,提高国产铸件产品的质量。 三是使尽可能多的铸造企业通过生产优质铸件产品,尤其是生产质量好,成本低的优质铸件产品,提高盈利能力,从而增加铸造企业的市场竞争力。

+查看全文

15 2020-01

铸铁件无冒口工艺,如何优化生产?
铸铁件无冒口工艺,如何优化生产?

由球墨铸铁的凝固特点认为球铁件易于出现缩孔缩松缺陷,因而其实现无冒口铸造较为困难。阐述了实现球铁件无冒口铸造工艺所应具备的铁液成份、浇注温度、冷铁工艺、铸型强度和刚度、孕育处理、铁液过滤和铸件模数等条件,用大模数铸件和小模数铸件铸造工艺实例佐证了自己的观点。 1、球墨铸铁的凝固特点 球墨铸铁与灰铸铁的凝固方式不同是由球墨与片墨生长方式不同而造成的。 在亚共晶灰铁中石墨在初生奥氏体的边缘开始析出后,石墨片的两侧处在奥氏体的包围下从奥氏体中吸收石墨而变厚,石墨片的先端在液体中吸收石墨而生长。 在球墨铸铁中,由于石墨呈球状,石墨球析出后就开始向周围吸收石墨,周围的液体因为w(C)量降低而变为固态的奥氏体并且将石墨球包围;由于石墨球处在奥氏体的包围中,从奥氏体中只能吸收的碳较为有限,而液体中的碳通过固体向石墨球扩散的速度很慢,被奥氏体包围又***了它的长大;所以,即使球墨铸铁的碳当量比灰铸铁高很多,球铁的石墨化却比较困难,因而也就没有足够的石墨化膨胀来抵消凝固收缩;因此,球墨铸铁容易产生缩孔。 另外,包裹石墨球的奥氏体层厚度一般是石墨球径的1.4倍,也就是说石墨球越大奥氏体层越厚,液体中的碳通过奥氏体转移至石墨球的难度也越大。 低硅球墨铸铁容易产生白口的根本原因也在于球墨铸铁的凝固方式。如上所述,由于球墨铸铁石墨化困难,没有足够的由石墨化产生的结晶潜热向铸型内释放而增大了过冷度,石墨来不及析出就形成了渗碳体。此外,球墨铸铁孕育衰退快,也是极易发生过冷的因素之一。 2.球墨铸铁无冒口铸造的条件 从球墨铸铁的凝固特点不难看出,球墨铸铁件要实现无冒口铸造的难度较大。笔者根据自己多年的生产实践经验,对球墨铸铁实现无冒口铸造工艺所需具备的条件作了一些归纳总结,在此与同行分享。 2.1铁液成分的选择 (1)碳当量(CE) 在同等条件下,微小的石墨在铁液中容易溶解并且不容易生长;随着石墨长大,石墨的生长速度也变快,所以使铁液在共晶前就产生初生石墨对促进共晶凝固石墨化是非常有利的。过共晶成分的铁液就能满足这样的条件,但过高的CE值使石墨在共晶凝固前就长大,长大到一定尺寸时石墨开始上浮,产生石墨漂浮缺陷。这时,由石墨化引起的体积膨胀只会造成铁液液面上升,不但对铸件的补缩毫无意义,而且由于石墨在液态时吸收了大量的碳,反而造成在共晶凝固时铁液中的w(C)量低不能产生足够的共晶石墨,也就不能抵消由于共晶凝固造成的收缩。实践证明,能够将CE值控制在4.30%~4.50%是***理想的。 (2)硅(Si) 一般认为在Fe-C-Si系合金中, Si是石墨化元素,w(Si)量高有利于石墨化膨胀,能够减少缩孔的发生。很少有人知道,Si是阻碍共晶凝固石墨化的。所以,不论从补缩的角度考虑,还是从防止碎块状石墨产生的角度考虑,只要能通过强化孕育等措施防止白口产生,都要尽可能地降低w(Si)量。 (3)碳(C) 在合理的CE值条件下,尽可能提高w(C)量。事实证明球墨铸铁的w(C)量控制在3.60%~3.70%,铸件具有***小的收缩率。 (4)硫(S) S是阻碍石墨球化的主要元素,球化处理的主要目的就是脱S,但球墨铸铁孕育衰退快与w(S)量太低有直接关系;所以,适当的w(S)量是必要的。可以将w(S)量控制在0.015%左右,利用MgS的成核作用增加石墨核心质点以增加石墨球数,减少衰退。 (5)镁(Mg) Mg也是阻碍石墨化的元素,所以在保证球化率能够达到90%以上的前提下,Mg应尽可能低。在原铁液w(O)、w(S)量不高的条件下,残留w(Mg)量能够控制在0.03%~0.04%是***理想的。 (6)其他元素 Mn、P、Cr等所有阻碍石墨化的元素越低越好。 要注意微量元素的影响,如Ti。当w(Ti)量低时,是强力促进石墨化元素,同时Ti又是碳化物形成元素,又是影响球化促进蠕虫状石墨产生的元素,所以w(Ti)量控制得越低越好。笔者公司曾经有一个非常成熟的无冒口铸造工艺,由于一时原材料短缺而使用了w(Ti)量为0.1%的生铁,生产出的铸件不但表面有缩陷,加工后内部也出现了集中型缩孔。 总之,纯净原材料对提高球墨铸铁的自补缩能力是有利的。 2.2浇注温度 有实验表明,球墨铸铁的浇注温度从1350℃到1500℃对铸件收缩的体积没有明显的影响,只不过缩孔的形态从集中型逐渐向分散型过度。石墨球的尺寸也随着浇注温度的升高逐渐变大,石墨球的数量逐渐减少。所以没有必要苛求过低的浇注温度,只要铸型强度足够抵抗铁液的静压力,浇注温度可以高一些。通过铁液加热铸型减少共晶凝固时的过冷度,使石墨化有充足的时间进行。不过,浇注速度要尽可能地快,以尽量减少型内铁液的温度差。 2.3冷铁 根据笔者使用冷铁的经验及利用以上理论分析,冷铁能够消除缩孔缺陷的说法并不确切。一方面,局部使用冷铁(如打孔部位),只能使缩孔转移而不是消除缩孔;另一方面,大面积地使用冷铁而获得了减少补缩或无冒口的效果,只是无意识地增加了铸型强度而不是冷铁减少了液体或共晶凝固收缩。事实上,如果冷铁使用过多,影响了石墨球的长大及石墨化的程度,相反会加剧收缩。 2.4铸型强度和刚度 由于球铁大都选择共晶或过共晶成分,铁液在铸型中冷却至共晶温度所经过的时间较长,也就是铸型所承受的铁液静压力的时间要比亚共晶成分的灰铸铁要长,铸型也就更容易产生压缩性变形。当石墨化膨胀引起的体积增加不能抵消液体收缩+凝固收缩+铸型变形体积时,产生缩孔也就在所难免。所以,足够的铸型刚度及抗压强度是实现无冒口铸造的重要条件,有许多覆砂铁型铸造工艺实现无冒口铸造既是这一理论的证明。 2.5孕育处理 强效孕育剂及瞬时延后孕育工艺既能给予铁液大量的核心质点,又能防止孕育衰退,能够保证球墨铸铁在共晶凝固时有足够的石墨球数;多而小的石墨球减少了液体中的C向石墨核心转移的距离,加快了石墨化速度,短时内大量的共晶凝固又能释放出较多的结晶潜热,减少了过冷度,既能防止白口的产生,又能加强石墨化膨胀。因而。强效孕育对提高球墨铸铁的自补缩能力至关重要。 2.6铁液过滤 铁液经过过滤,滤除了部分氧化夹杂,使铁液的微观流动性增强,可以降低微观缩孔的产生几率。 2.7铸件模数 由于铸态珠光体球铁需要加入阻碍石墨化的元素,这会影响石墨化程度,对铸件实现自补缩目的有一定影响,所以有资料介绍,无冒口铸造适用于牌号在QT500以下的球墨铸铁。除此之外,由铸件的形状尺寸所决定的模数应在3.1cm以上。 值得注意的是,厚度<50mm的板类铸件实现无冒口铸造是困难的。 也有资料介绍,对QT500以上的球墨铸铁实现无冒口铸造工艺的条件是其模数应大于3.6cm。 3.应用实例介绍 3.1大模数铸件无冒口铸造工艺实例 材料牌号为GGG70的风电增速器行星支架铸件,重量为3300kg,轮廓尺寸为φ1260×1220mm,铸件模数约为5.0cm。铸件成分为:w(C)3.62%;w(Si)2.15%;w(Mn)0.25%;w(P)0.035%;w(S)0.012%;w(Mg)0.036%;w(Cu)0.98%。浇注温度为1370~1380℃ 考虑到铁液对铸型下部的压力较大,容易使铸型下部产生压缩变形,所以客户推荐将冷铁主要集中放置在下部(如图1)。根据以往的经验,开始试制时,我们决定使用无冒口铸造工艺,也就是图1去掉冒口的工艺。虽然客户请***人员对所试制铸件做超声探伤并未发现有内部缺陷,解剖结果也未发现缩孔缺陷。但对照其它相关资料及客户提供的参考工艺,我们对这么重要的铸件批量生产后一旦发生缩孔缺陷的后果甚为担心,所以对图1工艺进行了凝固模拟试验,模拟结果如图2。 图1 推荐的冒口补缩工艺 图2 根据图1工艺的模拟结果 从模拟结果可见,液态收缩已经将包括内部的3个Φ140×170mm圆形发热保温冒口及外侧的3个320×200×320mm腰圆形发热保温冒口内的铁液全部用尽;因而,我们在原有320×200×320mm发热保温冒口的上面再加上1个同等大小的冒口,即将冒口尺寸改为320×200×640mm。但是,浇铸后的结果却是所有冒口一点收缩的痕迹也没有,从而证实了这个铸件完全可以实现无冒口铸造。 3.2小模数铸件有冒口铸造实例 图3所示的蜂窝板材料牌号为QT500-7,长×宽×高尺寸为1 230×860×32 mm,铸件模数M=3.2/2=1.6 cm。 图3 蜂窝板毛坯图 此铸件模数远小于3.1cm,显然不适用于无冒口铸造工艺,但试制时为了提高工艺出品率,采用了立浇雨淋式浇口(图4),原意是想使铸件在凝固时产生自上而下的温度梯度,以利用横浇口补缩,但结果却是在铸件的中间部位加工后产生了大面积连通性缩孔(图4中双点划线处)。试制4件无一件成品。 图4 试制工艺方案示意图 于是,我们改变思路,制定了如图5所示的卧浇、冷铁加冒口工艺。用冷铁将铸件分割成9部分,每部分的中央放置冒口。改进后的工艺出品率大于75%,产品质量稳定,废品率在2.0%以下,由于原材料和工艺都较稳定,加工后几乎没有废品。 图5 改进后的成熟工艺

+查看全文

13 2020-01

怎么用肉眼,判断铁水温度?
怎么用肉眼,判断铁水温度?

如果是正常的干式切削,几乎所有的钢材切出来的屑都是要烧了呈现紫色才合理的。在这里抛开刀片材料、转速、走刀量、切削深度、段屑槽的形状、刀尖大小等不谈,单谈干式切削时铁屑颜色的变化:银白色-淡黄色-暗黄色-绛红色-暗蓝色-蓝色-蓝灰色-灰白色-紫黑色,温度也由200摄氏度左右上升到500摄氏度以上,这个颜色变化过程也就是切削过程中所消耗的功的绝大部分转换成切削热的过程,同时也可以看作是刀具损耗(锋利-钝化-剧烈钝化-报废)过程(无积屑瘤时)注意我们通常所说的切削温度是指平均温度。 切削颜色为蓝或蓝紫色时较为合理,如果银白或黄色,则未充分发挥效率,如果蓝灰则切削用量太大。使用高速钢刀具,则削为银白和微黄为宜,如果削蓝则要减小转速或进给。 切屑颜色与切削温度关系: 银白色  ——  约<200℃以下 淡黄色  ——  约220℃ 深蓝色  ——  约300℃   淡灰色  ——  约400℃   深紫黑色  ——  约>500℃    靠颜色的变化来确定合理参数只是方法或者手段之一。

+查看全文

10 2020-01

热处理工艺口诀
热处理工艺口诀

热处理工艺口诀 热处理是重之重,决定产品高质量. 工艺方法应优化,设备性能需掌握. 各段参数选正确,***可靠应优先. 加热保温和冷却,环环相扣不马虎. 用钢成分有变化,影响相变要考虑. 利用计算调参数,工艺可靠更适用. 钢种类别要分清,合理选项更科学. 加热温度颇重要,保温时间要充分. 高合金钢要分段,缓慢加热有保障. 过热欠热均不利,恰好需要多斟酌. 保温时间要考虑,加热条件和状态. 零件多少和壁厚,选择计算抓重点. 氧化脱碳要控制,多种方法可选择. 营造无氧是关键,***佳选择是真空. 零件细长垂直放,薄壁更要防变形. 截面突变要注意,加热冷却要防护. 冷却大于临界值,获马氏体是根本. 冷却掌握要得当,恰当止冷防开裂. 确保硬度打基础,立即回火去应力. 温度调整达硬度,钢种不同回火变. 多次回火不可少,稳定尺寸保性能. 钢有脆性需快冷,确保性能要记牢. 硬度性能有依据,定量关系可换算. 掌握科学编工艺,脚踏实地多实践. 积累经验多总结,实用快捷更可靠.

+查看全文

06 2020-01

6种消失模铸造技术
6种消失模铸造技术

消失模铸造技术是用泡沫塑料制作成与零件结构和尺寸完全一样的实型模具,经浸涂耐火粘结涂料,烘干后进行干砂造型,振动紧实,然后浇入金属液使模样受热气化消失,而得到与模样形状一致的金属零件的铸造方法。 1、压力消失模铸造技术 压力消失模铸造技术是消失模铸造技术与压力凝固结晶技术相结合的铸造新技术,它是在带砂箱的压力灌中,浇注金属液使泡沫塑料气化消失后,迅速密封压力灌,并通入一定压力的气体,使金属液在压力下凝固结晶成型的铸造方法。这种铸造技术的特点是能够显著减少铸件中的缩孔、缩松、气孔等铸造缺陷,提高铸件致密度,改善铸件力学性能。 2、真空低压消失模铸造技术 真空低压消失模铸造技术是将负压消失模铸造方法和低压反重力浇注方法复合而发展的一种新铸造技术。真空低压消失模铸造技术的特点是:综合了低压铸造与真空消失模铸造的技术优势,在可控的气压下完成充型过程,大大提高了合金的铸造充型能力;与压铸相比,设备投资小、铸件成本低、铸件可热处理强化;而与砂型铸造相比,铸件的精度高、表面粗糙度小、生产率高、性能好;反重力作用下,直浇口成为补缩短通道,浇注温度的损失小,液态合金在可控的压力下进行补缩凝固,合金铸件的浇注系统简单有效、成品率高、组织致密;真空低压消失模铸造的浇注温度低,适合于多种有色合金。 3、振动消失模铸造技术 振动消失模铸造技术是在消失模铸造过程中施加一定频率和振幅的振动,使铸件在振动场的作用下凝固,由于消失模铸造凝固过程中对金属溶液施加了一定时间振动,振动力使液相与固相间产生相对运动,而使枝晶破碎,增加液相内结晶核心,使铸件***终凝固组织细化、补缩提高,力学性能改善。该技术利用消失模铸造中现成的紧实振动台,通过振动电机产生的机械振动,使金属液在动力激励下生核,达到细化组织的目的,是一种操作简便、成本低廉、无环境污染的方法。 4、半固态消失模铸造技术 半固态消失模铸造技术是消失模铸造技术与半固态技术相结合的新铸造技术,由于该工艺的特点在于控制液固相的相对比例,也称转变控制半固态成形。该技术可以提高铸件致密度、减少偏析、提高尺寸精度和铸件性能。 5、消失模壳型铸造技术 消失模壳型铸造技术是熔模铸造技术与消失模铸造结合起来的新型铸造方法。该方法是将用发泡模具制作的与零件形状一样的泡沫塑料模样表面涂上数层耐火材料,待其硬化干燥后,将其中的泡沫塑料模样燃烧气化消失而制成型壳,经过焙烧,然后进行浇注,而获得较高尺寸精度铸件的一种新型精密铸造方法。它具有消失模铸造中的模样尺寸大、精密度高的特点,又有熔模精密铸造中结壳精度、强度等优点。与普通熔模铸造相比,其特点是泡沫塑料模料成本低廉,模样粘接组合方便,气化消失容易,克服了熔模铸造模料容易软化而引起的熔模变形的问题,可以生产较大尺寸的各种合金复杂铸件 6、消失模悬浮铸造技术 消失模悬浮铸造技术是消失模铸造工艺与悬浮铸造结合起来的一种新型实用铸造技术。该技术工艺过程是金属液浇入铸型后,泡沫塑料模样气化,夹杂在冒口模型的悬浮剂(或将悬浮剂放置在模样某特定位置,或将悬浮剂与EPS一起制成泡沫模样)与金属液发生物化反应从而提高铸件整体(或部分)组织性能。

+查看全文

03 2020-01

12...45678...1011 共102条 11页,到第 确定